Existence and Uniqueness of a Classical Solution of Fourier’s First Problem for Nonlinear Parabolic-elliptic Systems
نویسنده
چکیده
This paper deals with the existence and uniqueness of the classical solution of Fourier’s first problem for a wide class of systems of two weakly coupled quasi-linear second order partial differential functional equations. One equation is of the parabolic type (the degenerated parabolic equation) and the other of the elliptic type (the elliptic equation with a parameter). The functional dependence is of the Volterra type. The differential functional problem is considered in the one-dimensional case. A suitable theorem is formulated and proved. The proof is based on some monotone iterative method with use of Green’s function and basic theorems of integral calculus. It is a new technique of solving of the specific mixed systems considered. Examples of physical applications are given.
منابع مشابه
SOLUTION OF AN INVERSE PARABOLIC PROBLEM WITH UNKNOWN SOURCE-FUNCTION AND NONCONSTANT DIFFUSIVITY VIA THE INTEGRAL EQUATION METHODS
In this paper, a nonlinear inverse problem of parabolic type, is considered. By reducing this inverse problem to a system of Volterra integral equations the existence, uniqueness, and stability of the solution will be shown.
متن کاملA Class of Third Order Parabolic Equations with Integral Conditions
In this paper, we study a mixed problem for a third order parabolic equation with non classical boundary condition. We prove the existence and uniqueness of the solution. The proof of the uniqueness is based on a priori estimate and the existence is established by Fourier’s method. Mathematics Subject Classification: 35B45, 35K35
متن کاملExistence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کامل